Перевод чисел в различные системы счисления с решением

Перевод чисел в различные системы счисления с решением | онлайн калькулятор | programforyou

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

159 2            
158 79 2          
1 78 39 2        
  1 38 19 2      
    1 18 9 2    
      1 8 4 2  
        1 4 2 2
          2 1

Рис. 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

615 8    
608 76 8  
7 72 9 8
  4 8 1
    1  

Рис. 2

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16    
19664 1229 16  
9 1216 76 16
  13 64 4
    12  

Рис. 3

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

    0.214
  x 2
  0.428
  x 2
  0.856
  x 2
1   0.712
  x 2
1   0.424
  x 2
  0.848
  x 2
1   0.696
  x 2
1   0.392

Рис. 4

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

    0.125
  x 2
  0.25
  x 2
  0.5
  x 2
1   0.0

Рис. 5

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

    0.214
  x 16
3   0.424
  x 16
6   0.784
  x 16
12   0.544
  x 16
8   0.704
  x 16
11   0.264
  x 16
4   0.224

Рис. 6

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

    0.512
  x 8
4   0.096
  x 8
  0.768
  x 8
6   0.144
  x 8
1   0.152
  x 8
1   0.216
  x 8
1   0.728

Рис. 7

Получили:

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями

Формулы, используемые в 9-11 классах по теме
«ЗАДАЧИ на Прямолинейное равноускоренное движение».

Время с
Проекция начальной скорости м/с
Проекция мгновенной скорости м/с
Проекция ускорения м/с2
Проекция перемещения м
Координата м

1 мин = 60 с;   1 ч = 3600 с;   1 км = 1000 м;   1 м/с = 3,6 км/ч.

В 7 классе используйте другой конспект — «Задачи на движение с решениями»

Для подготовки к ЕГЭ пользуйтесь «ТЕМАТИЧЕСКИМ ТРЕНИНГОМ»

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

Задача № 1.
 Автомобиль, двигаясь с ускорением –0,5 м/с2, уменьшил свою скорость от 54 до 18 км/ч. Сколько времени ему для этого понадобилось?

Задача № 2.
 При подходе к станции поезд начал торможение с ускорением 0,1 м/с2, имея начальную скорость 90 км/ч. Определите тормозной путь поезда, если торможение длилось 1 мин.

Задача № 3.
 По графику проекции скорости определите: 1) начальную скорость тела; 2) время движения тела до остановки; 3) ускорение тела; 4) вид движения (разгоняется тело или тормозит);  5) запишите уравнение проекции скорости; 6) запишите уравнение координаты (начальную координату считайте равной нулю).

Решение:

Задача № 4.
 Движение двух тел задано уравнениями проекции скорости:v1x(t) = 2 + 2tv2x(t) = 6 – 2tВ одной координатной плоскости постройте график проекции скорости каждого тела. Что означает точка пересечения графиков?

Задача № 5.
 Движение тела задано уравнением x(t) = 5 + 10t — 0,5t2.  Определите:  1) начальную координату тела;  2) проекцию скорости тела;  3) проекцию ускорения;  4) вид движения (разгоняется тело или тормозит);  5) запишите уравнение проекции скорости;  6) определите значение координаты и скорости в момент времени t = 4 с.  Сравним уравнение координаты в общем виде с данным уравнением и найдем искомые величины.

Решение:

Задача № 6.
 Вагон движется равноускоренно с ускорением -0,5 м/с2. Начальная скорость вагона равна 54 км/ч. Через сколько времени вагон остановится? Постройте график зависимости скорости от времени.

Задача № 7.
 Самолет, летевший прямолинейно с постоянной скоростью 360 км/ч, стал двигаться с постоянным ускорением 9 м/с2 в течение 10 с в том же направлении. Какой скорости достиг самолет и какое расстояние он пролетел за это время? Чему равна средняя скорость за время 10 с при ускоренном движении?

Задача № 8.
 Трамвай двигался равномерно прямолинейно со скоростью 6 м/с, а в процессе торможения — равноускоренно с ускорением 0,6 м/с2. Определите время торможения и тормозной путь трамвая. Постройте графики скорости v(t) и ускорения a(t).

Задача № 9.
 Тело, имея некоторую начальную скорость, движется равноускоренно. За время t = 2 с тело прошло путь S = 18 м, причём его скорость увеличилась в 5 раз. Найти ускорение и начальную скорость тела.

Задача № 10. (повышенной сложности)
 Прямолинейное движение описывается формулой х = –4 + 2t – t2. Опишите движение, постройте для него графики vx(t), sx(t), l(t).

Задача № 11.
  ОГЭ
 Поезд, идущий со скоростью v = 36 км/ч, начинает двигаться равноускоренно и проходит путь S = 600 м, имея в конце этого участка скорость v = 45 км/ч. Определить ускорение поезда а и время t его ускоренного движения.

Краткое пояснение для решения
ЗАДАЧИ на Прямолинейное равноускоренное движение.

Равноускоренным движением называется такое движение, при котором тело за равные промежутки времени изменяет свою скорость на одну и ту же величину. Движение, при котором скорость равномерно уменьшается, тоже считают равноускоренным (иногда его называют равнозамедленным).

Величины, участвующие в описании равноускоренного движения, почти все векторные. При решении задач формулы записывают обычно через проекции векторов на координатные оси. Если тело движется по горизонтали, ось обозначают буквой х, если по вертикали — буквой у.

Если векторы скорости и ускорения сонаправлены (их проекции имеют одинаковые знаки), тело разгоняется, т. е. его скорость увеличивается. Если же векторы скорости и ускорения противоположно направлены, тело тормозит.

Это конспект по теме «ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Свободное падение тел с решениями
  • Посмотреть конспект по теме КИНЕМАТИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике (онлайн-тесты).

Курс математики в 4 классе

Четвертая ступень обучения — это последний год в начальной школе. Впереди ребят ждут новые учителя и предметы. Однако перед этим им предстоит сдать первый мини экзамен — ВПР. Знания по математике будут проверяться в первую очередь, ведь большинство дисциплин в дальнейшем так или иначе будут связаны с этой точной наукой. От того, насколько надежный задел на будущее заложен сегодня, будут зависеть успехи школьника. Именно поэтому предметный курс текущего года предполагает изучение новых тем и повторение пройденных ранее. Структурно его можно представить следующим образом:

  1. Теоретические модули на освоение нового материала;
  2. Итоговое повторение всего изученного;
  3. Информация для расширения и углубления знаний;
  4. Обзор справочного материала по основным сведениям курса математики.

Учебник под редакцией Моро полностью отражает все вышеперечисленные пункты. На его страницах ребята смогут ознакомиться не только с теоретическими аспектами, но и закрепить свои знания, решив многочисленные упражнения. Учитывая возраст учеников, авторы постарались максимально разнообразить задания. Четвероклассников ждут стандартные текстовые задачи, мини тесты, ребусы, головоломки, математические кроссворды. Все это увлечет юных математиков, заставит с интересом вникать в основы предмета. А если на пути встретятся сложности, то достаточно обратиться к решебнику по математике 4 класс учебник Моро М. И., Бантова М. А., Бельтюкова Г. В.

Для чего нужны ГДЗ по математике в 4 классе

Не стоит думать, что школьная жизнь четвероклассников легка и безоблачна. Каждый день ребята пытаются справится с массой задач:

  • выполнение домашнего задания;
  • подготовка к опросам и контрольным работам в классе;
  • самостоятельное освоение новых тем в случае пропуска занятий;
  • создание тематических проектов;
  • посещение дополнительных секций и кружков.

А ведь еще нужно выкроить время на отдых и сон. С такой нагрузкой справится далеко не каждый. Именно поэтому не стоит пренебрегать помощью ГДЗ, особенно в таком сложном предмете как математика. Теперь, сталкиваясь с трудными задачами, не нужно лопатить горы литературы в поисках ответа. Достаточно открыть электронное пособие и разобраться в алгоритме решения. Таким образом, дети сэкономят время и разберутся во всех вопросах самостоятельно.

Понравилась статья? Поделиться с друзьями:
Знания Online
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: