Гдз по математике 4 класс моро, бантова часть 2 вопрос внизу страницы 75

4 класс. моро. учебник №2. ответы к стр. 75

Сложение двух чисел в столбик: что нужно знать?

Прежде чем мы перейдем непосредственно к операции сложения в столбик, рассмотрим некоторые важные моменты. Для быстрого освоения материала желательно:

  1. Знать и хорошо ориентироваться в таблице сложения. Так, при проведении промежуточных вычислений, вам не придется тратить время и постоянно обращаться к таблице сложения.
  2. Помнить свойства сложения натуральных чисел. Особенно свойства, связанные со сложением нулей. Напомним их кратко. Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому. Сумма двух нулей есть нуль.
  3. Знать правила сравнения натуральных чисел. 
  4. Знать, что такое разряд натурального числа. Напомним, что разряд — это позиция и значение цифры в записи числа. Разряд определяет значение цифры в числе — единицы, десятки, сотни, тысячи и т.д.

Основы деления десятичных дробей

Все десятичные дроби, как конечные, так и периодические, представляют из себя всего лишь особую форму записи обыкновенных дробей. Следовательно, на них распространяются те же принципы, что и на соответствующие им обыкновенные дроби. Таким образом, весь процесс деления десятичных дробей мы сводим к замене их на обыкновенные с последующим вычислением уже известными нам способами. Возьмем конкретный пример.

Пример 1

Разделите 1,2 на ,48.

Решение

Запишем десятичные дроби в виде обыкновенных. У нас получится:

1,2=1210=65

,48=48100=1225.

Таким образом, нам надо разделить 65 на 1225. Считаем:

1,2,48=621225=65·2512=6·255·12=52

Из получившейся в итоге неправильной дроби можно выделить целую часть и получить смешанное число 212, а можно представить ее в виде десятичной дроби, чтобы она соответствовала исходным цифрам: 52=2,5. О том, как это сделать, мы уже писали ранее.

Ответ: 1,2,48=2,5. 

Пример 2

Посчитайте, сколько будет ,(504),56.

Решение

Для начала нам нужно перевести периодическую десятичную дробь в обыкновенную.

,(504)=,5041-,001=,504,999=504999=56111

После этого конечную десятичную дробь также переведем в другой вид: ,56=56100. Теперь у нас есть два числа, с которыми нам будет легко провести необходимые вычисления:

,(504)1,11=5611156100=56111·10056=100111

У нас получился результат, который мы также можем перевести в десятичный вид. Для этого разделим числитель на знаменатель, используя метод столбика:

Ответ: ,(504),56=,(900). 

Если же в примере на деление нам встретились непериодические десятичные дроби, то мы будем действовать немного иначе. Мы не можем их привести к привычным обыкновенным дробям, поэтому при делении приходится предварительно округлять их до определенного разряда. Это действие должно быть выполнено как с делимым, так и с делителем: имеющуюся конечную или периодическую дробь в интересах точности мы тоже будем округлять.

Пример 3

Найдите, сколько будет ,779…1,5602.

Решение 

Первым делом мы округляем обе дроби до сотых. Так мы переходим от бесконечных непериодических дробей к конечным десятичным:

,779…≈,78

1,5602≈1,56

Можем продолжить подсчеты и получить примерный результат: ,779…1,5602≈,781,56=78100156100=78100·100156=78156=12=,5.

Точность результата будет зависеть от степени округления.

Ответ: ,779…1,5602≈,5.

Как делить в столбик четырехзначные, многозначные большие числа, многочлены на многочлены: примеры, объяснение

на доске решены примеры на деление столбиком трёх- и более значных чисел

В случае деления четырёхзначного числа на любое, которое содержит до 4 порядков одновременно, обратите внимание ребёнка на нюансы:

  • определение правильного количества порядков после действия деления. Например, в примере 6734:56 должно получится двузначное целое число в графе «частное», а в примере 8956:1243 — однозначное целое,
  • появление нулей в частном. Когда в ходе решения при переносе следующего числа делимого результат оказывается меньше делителя,
  • проверку полученного результата посредством выполнения действия умножения. Этот нюанс актуален для деления больших чисел без остатка. Если последний присутствует, то советуйте ребёнку проверить себя и ещё раз разделить числа в столбик.

Ниже пример решения.

алгоритм деления столбиком четырёхзначного числа

пример деления столбиком четырёхзначного числа на двузначное

Для больших многозначных чисел, которые делятся на конкретные значения меньше или равные им по количеству знаков, актуальны все алгоритмы, рассмотренные выше.

Ребёнку следует быть особенно внимательным в таких случаях и правильно определять:

  • количество знаков у частного, то есть результата
  • цифры у делимого для первого действия
  • правильность переноса остальных чисел

примеры деления столбиком многочленов

При совершении действия деления над многочленами обращайте внимание детей на ряд особенностей:

  • у действия может быть остаток либо отсутствовать. В первом случае запишите его в числителе, а делитель в знаменателе,
  • для совершения действия вычитания дописывайте в многочлен недостающие степени функции, умноженные на ноль,
  • совершайте преобразование многочленов путём выделения повторяющихся дву-/многочленов. Тогда их сократите и получится результат без остатка.

Ниже ряд подробных примеров с решениями.

примеры деления многочленов в столбик

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Сложение столбиком трех и более чисел. Что нужно знать?

Во первых, нужно усвоить всю информацию, уже изложенную в этой статье. Во вторых, также помним, что нули не влияют на результат сложения, и сколько бы не было в выражении слагаемых нулей, их сумма будет равна нулю.

Этапы сложения в столбик трех и более чисел аналогичны этапам из уже рассмотренных примеров с двумя числами. Обратимся к практике и поясним ход решения.

Пример 5. Сложение трех натуральных чисел столбиком

Сложим столбиком числа 274, 3082 и 201297.

Сначала делаем запись:

Начинаем с первого столбика, справа налево.

4+2+7=13; 13>10

3 пишем, 1 в уме. Переходим ко второму столбику.

7+8+9=24; 24+1=25; 25>10

5 пишем, 2 в уме. Переходим к третьему столбику.

2++2=4; 4+2=6; 6<10

6 пишем, и ничего не запоминаем. Переходим к четвертому столбику.

3+1=4; 4<10

4 пишем, и ничего не запоминаем. Переходим к пятому столбику. Пятый и шестой столбики содержат по одному числу, в уме с предыдущих шагов мы ничего не держим, поэтому просто переносим числа из последних двух столбиков под черту.

Ответ: 274+3082+201297=204653

Совет: при сложении трех и большего количества чисел в столбик, если вычисления выходят слишком громоздкими, бывает удобнее последовательно сложить два числа, затем еще два и так далее.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий при делении на двузначные числа. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.

  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370

Важно начинать запись с первого числа слева.
После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
Теперь делим 370 на 74. Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик

Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка.

Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик. Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка.

4070:74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

Числа от 1 до 1000 Итоговое повторение всего изученного Задачи Ответы к стр. 100

Вместе 6 ручек и 6 карандашей стоят α р. Ручка стоит k р. Запиши выражения, которые показывают:
1) сколько стоит 1 карандаш;
2) сколько стоят 12 карандашей.

1) (α — 6 • k) : 6
2) (α — 6 • k) : 6 • 12

Составь по таблице задачу. Используя данные таблицы, запиши выражение, которое обозначает цену люстры.

ЦенаКоличествоСтоимость
Светильникиb р. 25 шт. Одинаковая
Люстры?8 шт.

Два разных автомата выпускают каждый по 30000 спичек в минуту и упаковывают их в коробки: один по 50 штук, другой по 60 штук. Какой автомат упаковывает больше коробков спичек в минуту и на сколько коробков больше?

1) 30000 : 50 = 600 (к. ) — упаковывает первый автомат за минуту
2) 30000 : 60 = 500 (к. ) — упаковывает второй автомат за минуту
3) 600 — 500 = 100 (к. )
О т в е т: первый автомат упаковывает в минуту на 100 коробок больше, чем второй.

Путешественники проплыли на парусной лодке за первые сутки пути 160 км, что на 30 км больше, чем за вторые сутки, и в 2 раза больше, чем за третьи. Сколько всего километров проплыли путешественники за трое суток?

1) 160 — 30 = 130 (км) — проплыли путешественники за вторые сутки
2) 160 : 2 = 80 (км) — проплыли путешественники за третьи сутки
3) 160 + 130 + 80 = 370 (км)
Ответ: 370 км проплыли путешественники за трое суток.

Олег проехал на мотороллере 100 км за 3 ч. За сколько часов он может проехать с той же скоростью 200 км?

1) 200 : 100 = 2 (раза) — больше проедет
2) 3 • 2 = 6 (ч)
О т в е т: за 6 ч он может проехать с той же скоростью 200 км.

Два одинаковых насоса выкачивали из подвала воду: первый работал 12 мин, второй — 18 мин, и он выкачал на 4320 л воды больше, чем первый. Сколько литров воды выкачал каждый насос?

1) 18 — 12 = 6 (мин) — работал второй насос дольше, чем первый
2) 4320 : 6 = 720 (л) — в минуту выкачивает каждый из насосов
3) 720 • 12 = 8640 (л) — выкачал первый насос
4) 720 • 18 = 12960 (л) — выкачал второй насос
О т в е т: 8640 л, 12960 л.

С аэродрома одновременно поднялись два вертолёта, которые полетели в противоположных направлениях. Один из них летел со скоростью 240 км/ч, а другой — 180 км/ч. На каком расстоянии друг от друга будут вертолёты через 3 ч? Реши задачу разными способами.

1-й способ
1) 240 + 180 = 420 (км/ч) — скорость удаления вертолетов
2) 420 • 3 = 1260 (км)
О т в е т: расстояние между самолётами через 3 ч 1260 км.

2-й способ
1) 240 • 3 = 720 (км) — пролетит 1-й вертолет за 3 часа
2) 180 • 3 = 540 (км) — пролетит 2-й вертолет за 3 часа
3) 720 + 540 = 1260 (км)
О т в е т: 1260 км будет между вертолетами через 3 ч.

ЗАДАНИЕ НА ПОЛЯХ
РЕБУС

×795
      12
+ 1590
  795 
  9540

4 класс. Моро. Учебник №2. Ответы к стр. 100

5 (89. 52%) от 21 голосующих

Понравилась статья? Поделиться с друзьями:
Знания Online
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: