4 класс. моро. учебник №2. ответы к стр. 62

Гдз математика 4 класс моро - учебник

Деление двух десятичных дробей

Оно может показаться сложным. Но только вначале. Ведь то, как выполнить деление в столбик дробей на натуральное число, уже понятно. Значит, нужно свести этот пример к уже привычному виду.

Сделать это легко. Нужно умножить обе дроби на 10, 100, 1 000 или 10 000, а может быть, на миллион, если этого требует задача. Множитель полагается выбирать исходя из того, сколько нолей стоит в десятичной части делителя. То есть в результате получится, что делить придется дробь на натуральное число.

Причем это будет в худшем случае. Ведь может получиться так, что делимое от этой операции станет целым числом. Тогда решение примера с делением в столбик дробей сведется к самому простому варианту: операции с натуральными числами.

В качестве примера: 28,4 делим на 3,2:

  • Сначала их необходимо умножить на 10, поскольку во втором числе после запятой стоит только одна цифра. Умножение даст 284 и 32.
  • Их полагается разделить. Причем сразу все число 284 на 32.
  • Первым подобранным числом для ответа является 8. От его умножения получается 256. Остатком будет 28.
  • Деление целой части закончилось, и в ответ полагается поставить запятую.
  • Снести к остатку 0.
  • Снова взять по 8.
  • Остаток: 24. К нему приписать еще один 0.
  • Теперь брать нужно 7.
  • Результат умножения — 224, остаток — 16.
  • Снести еще один 0. Взять по 5 и получится как раз 160. Остаток — 0.

Деление закончено. Результат примера 28,4:3,2 равен 8,875.

Что делать, если разделить нужно десятичную дробь?

Опять же, это число похоже на натуральное, если бы не запятая, отделяющая целую часть от дробной. Это наводит на мысль о том, что деление десятичных дробей в столбик подобно тому, которое было описано выше.

Единственным отличием будет пункт с запятой. Ее полагается поставить в ответ сразу, как только снесена первая цифра из дробной части. По-другому это можно сказать так: закончилось деление целой части — поставь запятую и продолжай решение дальше.

Во время решения примеров на деление в столбик с десятичными дробями нужно помнить, что в части после запятой можно приписать любое количество нолей. Иногда это нужно для того, чтобы доделить числа до конца.

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Часть 1:

ЧИСЛА ОТ 1 ДО 1000:
Нумерация:

1

2

3

4

5

6

7

8

9

10

?

Четыре арифметических действия: сложение, вычитание, умножение, деление:

11

12

13

14

15

16

17

18

19

20

21

22

?

23

24

25

26

27

28

?

29

30

31

32

33

34

35

36

?

37

38

39

40

41

42

43

?

44

45

46

47

48

49

50

51

52

53

?

54

55

56

57

58

59

?

60

61

62

63

64

65

66

67

?

68

69

70

71

72

73

?

74

75

76

77

78

79

80

?

Диаграммы:

81

82

83

Страница 18. ЧТО УЗНАЛИ. ЧЕМУ НАУЧИЛИСЬ:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Страница 19. ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ:

1

2

3

4

ЧИСЛА, КОТОРЫЕ БОЛЬШЕ 1000:
Нумерация:

84

85

86

87

88

89

90

91

92

93

?

94

95

96

97

98

99

?

100

101

102

103

104

105

106

?

107

108

109

110

111

112

113

114

115

116

?

117

118

119

120

121

122

123

124

?

125

126

127

128

129

130

131

132

133

?

134

135

136

137

138

139

140

141

142

?

143

144

145

146

147

Страница 31. СТРАНИЧКИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ:

1

2

3

Страница 34. ЧТО УЗНАЛИ. ЧЕМУ НАУЧИЛИСЬ:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Страница 35. ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ:

1

2

3

Величины:

148

149

150

151

152

153

154

155

?

156

157

158

159

160

161

162

163

164

165

?

166

167

168

169

170

171

172

173

174

175

176

177

?

178

179

180

181

182

183

184

185

186

187

188

189

190

?

191

192

193

194

195

196

197

198

199

?

200

201

202

203

204

205

206

207

208

?

209

210

211

212

213

214

215

216

?

217

218

219

220

221

222

?

223

224

225

226

227

228

229

230

?

231

232

233

234

235

236

237

238

?

239

240

241

242

243

244

245

?

246

247

248

249

250

251

252

253

?

254

255

256

257

258

259

Страница 53. ЧТО УЗНАЛИ. ЧЕМУ НАУЧИЛИСЬ:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Страница 55. ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ:

1

2

3

Страница 58. ПРОВЕРИМ СЕБЯ И ОЦЕНИМ СВОИ ДОСТИЖЕНИЯ:
Вариант 1:

1

2

3

4

5

6

7

8

9

10

Вариант 2:

1

2

3

4

5

6

7

8

9

10

Сложение и вычитание:

260

261

262

263

264

265

266

?

267

268

269

270

271

272

273

274

275

?

276

277

278

279

280

281

282

?

283

284

285

286

287

288

289

290

?

291

292

293

294

295

?

296

297

298

299

300

301

302

303

304

305

?

306

307

308

309

310

311

312

?

313

314

315

316

317

318

?

319

320

321

322

323

324

Страница 69. ЧТО УЗНАЛИ. ЧЕМУ НАУЧИЛИСЬ:

1

2

3

4

5

6

7

8

9

10

11

12

Страница 70. СТРАНИЧКИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ:

1

2

3

4

Страница 71. Задачи — Расчеты:

1

2

Страница 72. ЧТО УЗНАЛИ. ЧЕМУ НАУЧИЛИСЬ:

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Страница 73. ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ:

1

2

3

4

5

6

Страница 74. ПРОВЕРИМ СЕБЯ И ОЦЕНИМ СВОИ ДОСТИЖЕНИЯ:
Вариант 1:

1

2

3

4

5

6

7

8

9

10

Вариант 2:

1

2

3

4

5

6

7

8

9

10

Умножение и деление:

325

326

327

328

329

330

331

332

?

333

334

335

336

337

338

339

?

340

341

342

343

344

345

346

347

348

349

?

350

351

352

353

354

355

356

?

357

358

359

360

361

362

?

363

364

365

366

367

368

369

370

371

?

372

373

374

375

?

376

377

378

379

?

380

381

382

383

384

385

386

387

?

388

389

390

391

392

393

394

?

395

396

397

398

399

400

401

402

403

?

404

405

406

407

408

409

410

?

411

412

413

414

415

416

417

?

418

419

420

421

422

423

424

425

?

426

427

428

429

430

431

432

433

434

435

436

Страница 91. ЧТО УЗНАЛИ. ЧЕМУ НАУЧИЛИСЬ:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Страница 95. ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ:

1

2

3

4

5

6

7

8

Страница 96. ПРОВЕРИМ СЕБЯ И ОЦЕНИМ СВОИ ДОСТИЖЕНИЯ:
Вариант 1:

1

2

3

4

5

6

7

8

9

Вариант 2:

1

2

3

4

5

6

7

8

9

Тексты для контрольных работ:
Страница 98. Задания базового уровня:

1

2

3

4

5

6

7

8

Страница 99. Задания повышенного уровня сложности:

1

2

3

4

5

6

7

8

9

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Пример деления

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5.

Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Признаки делимости

Для разбора алгоритма деления 2 значений, которые являются внетабличными (отсутствуют в таблице умножения), необходимо обозначить элементы операции. Пусть дано некоторое выражение v: t = p. Коэффициенты в нем расшифровываются следующим образом:

  1. V — делимое, т. е. число, которое требуется разделить.
  2. T — математики называют его делителем.
  3. P — частное является числовым результатом, который будет получаться при делении двух величин.

Иногда в литературе с физико-математическим уклоном можно встретить такую запись: v / t = p. Кроме того, числа классифицируются на простые и составные. К первой группе относятся все значения, которые делятся без остатка только на 1 или на значение равное исходному, т. е. 23 делится на 1 и на 23, а остальных делителей у него нет вообще. Вторая группа — значения, состоящие из нескольких множителей. Например, 100 = 25 * 4 = 5 * 5 * 2 * 2.

Десятичная система состоит из однозначных цифр, формирующих двузначные, трехзначные, четырехзначные, пятизначные числа (количество разрядов можно продолжать до бесконечности). Для деления двухзначного значения на однозначное без остатка необходимо знать следующие свойства (признаки деления):

  1. 0: операция невозможна, поскольку превращает все выражение в пустое множество.
  2. 1: делятся все значения.
  3. 2: последняя цифра является четным значением, т. е. 0, 2, 4, 6 и 8.
  4. 3: сумму цифр, составляющих число, можно разделить на 3. Например, проверить возможность деления 72 на 3. Для этого следует применить такое правило: 7 + 2 = 9. По таблице умножения 9 делится на 3 без остатка. Следовательно, 72 делится на 3.
  5. 4: сумма двух цифр делится на 4. Если представлено 5-значное число, то нужно рассматривать 2 последних цифры.
  6. 5: последней цифрой является 0 или 5.
  7. 6: деление на составные части, т. е. на 2 и 3.
  8. 7: возможность выполнения операции определяется по формуле / 7, где а, b и с — соответствуют первой, второй и третьей цифрам. Для двузначной величины — a / 7 и b / 7.
  9. 8: должно делиться на 2 и 4. Если количество цифр больше 2, то следует рассматривать делимость без остатка трех последних цифр.
  10. 9: деление по таблице умножения. Если число состоит из трех и более цифр, то следует рассматривать деления их суммы на 9.

Пример на деление с остатком

Чтобы провести аналогию, возьмем пример, похожий на пример выше, и отличающийся лишь последней цифрой

Делим сначала точно так же, как в примере 15344:56, пока не дойдем до последнего неполного делимого 225. Разделим 225 на 56. Чтобы легче было подобрать цифру частного, разделим 225 на 50. То есть сначала на 10, будет 22 (остаток 5). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 225-224=1, деление выполнено с остатком.

Значение частного чисел 15345 и 56 равно 274 (остаток 1).

Деление в столбик – примеры для тренировки

Без множества примеров трудно освоить технику деления в столбик. Можно перерешать кучу примеров и тогда в любом случае материал усвоится хорошо. Ниже представлен пример деления числа 748 на 2. Давайте разберем этот простой пример деления в столбик.

  1. У делимого следует выделить сотни, точнее их 7 у делимого. Для этой цифры подбираем множитель: 2 · 3 = 6 ≤ 7, значит подходит.
  2. Пишем 6 под семеркой, а 3 под чертой, это одна из цифр частного.
  3. Вычтем из 7 — 6 = 1, и сносим 4. Теперь подбираем множитель: 2 · 7 = 14 = 14 — результат верен. Вторая цифра частного 7.
  4. Пишем 14 под 14, и сносим следующую цифру делимого 8. Подбираем множитель: 2 · 4 = 8 = 8, разница 0, число делится без остатка.
  5. Итак, результат 374.

Пример деления

Этот пример решен, существует и множество других примеров, которые будут представлены далее по тексту на фото. Эти примеры – готовое решение домашних задач, где подробно расписан процесс деления в столбик, как находится каждая цифра частного. Когда все их перерешаете самостоятельно, то дело доведется до автоматизма и вы сможете решить задание любой сложности, пользуясь своим умением.

Делить в столбик, пожалуй, одна из самых непростых тем в математики. Как уже упоминалось, в процессе используют все четыре действия, (начиная от сложения, заканчивая умножением). Без знаний этих процессов никак не обойтись. Некоторые думают, что зачем знать, как делить, если есть калькуляторы. Но не всегда бывают они под рукой, а посчитать надо сдачи или другую величину, и знания пригодятся на практике. Далее изучите примеры на эту тему.

Пример деленияалгоритмы деления в столбикДеление трехзначного и четырехзначного числаДеление 693 на 3Деление чисел с нулямиДеление без остатка

Еще здесь на портале вы можете узнать много интересного на тему образования вот в этих текстах:

  1. Сказка «Репка» по ролям в школе;
  2. Сочинение по басне Крылова «Ворона и лисица»;
  3. Сочинение на тему «Моя будущая профессия»;
  4. Считалки для детей разного возраста;
  5. Как правильно писать – на здоровье?
Понравилась статья? Поделиться с друзьями:
Знания Online
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: